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Abstract—The optimal solution to the optimum design problem of elastic frames with frequency-
dependent supports for specified fundamental natural frequency is shown to coincide with that of
the frames with the corresponding frequency-independent supports, provided that the support
stiffnesses of the former are expressed as single-valued non-increasing positive functions of
frequency. Two new theorems are introduced for establishing one-to-one correspondence between
the design spaces of these two classes of frames. It is also shown that the former optimal solution
for a frame with such support characteristics is also the solution to the optimum design problem
subject to the corresponding inequility constraint on fundamental natural frequency.

L ANTRODUCTION

The purpose of this paper is to disclose the characteristics of an optimal clastic structure
consisting of members or elements with frequency-independent stiffnesses and supported
by clastic springs or members with prescribed frequency-dependent stiffnesses. Building
structures and other civil engincering structures are supported by the ground and a better
model representing the restoring-force characteristics of the supporting ground is a sct of
springs or members with frequency-dependent stiffnesses.

The problem of optimum design of elastic structures for specified fundamental natural
frequency has been investigated extensively. A number of theories and various numerical
methods have been presented so fur (Pierson, 1972 Olhofl, 1980 Haug and Cea, 1981).
To the best of the authors® knowledge, however, no previous paper has dealt with a problem
of optimum design of an elastic structure supported by members with prescribed fre-
quency-dependent stiffnesses.

The eigenvalue problem of free vibration of such a structure has a mathematical
structure different from that of a structure involving no spring or member with frequency-
dependent stiffness. The former turns out to have a distinct stiffness matrix for each
vibration mode and the orthogonality relation between any pair of eigenvectors will not
hold in general. Furthermore, Rayleigh's principle will no longer hold without certain
restriction for the former elastic structure.

In this paper, some characteristics of an elastic structure with a prescribed fundamental
natural frequency supported by frequency-dependent springs arc illustrated first by a simple
example. Two new theorems are then introduced and proved for establishing one-to-one
correspondence between the design spaces of an ordered set of elastic frames supported by
members with frequency-dependent stiffnesses and of the corresponding ordered set of
clastic frames supported by thosc with the corresponding frequency-independent stiffnesses,
both with respect to fundamental natural frequency. It is shown also that the optimal
solution to the problem of optimum design of the former structure for specified fundamental
natural frequency is also the optimal solution to the problem subject to the corresponding
inequality constraint on fundamental natural frequency, provided that the stiffnesses of the
supporting members are single-valued non-increasing positive functions of frequency. An
optimum design of a plane shear building model supported by clastic springs with frequency-
dependent stiffnesses is illustrated for demonstrating the implication of the theorems.
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Fig. [. Two-degree-of-freedom model.

2. ELASTIC STRUCTURES WITH FREQUENCY-DEPENDENT ELASTIC SUPPORT AND WITH
FREQUENCY-INDEPENDENT ELASTIC SUPPORT

Some characteristics of an elastic structure with frequency-dependent elastic supports
can be illustrated by the simple shear butlding model shown in Fig. 1. The model has two
degrees of freedom only in horizontal direction. The stiffness of the support is to be
frequency-dependent and is denoted by £,(Q) where Q denotes the square of a natural
circular frequency w. On the other hand. the stiffness & ; of the first story 1s to be frequency-
independent. Let my and nt, denote the fumped masses of the ground and second floors,
respectively. Then the corresponding cigenvalue problem is defined as follows.

w0 ki) +k, —k. )] e, 0
Q - \ = (hH
o om ] Tl -k ke ] e 0
where u, and «; denote the horizontal displacements of masses iy and my, respectively.,
Let , denote the specified cigenvalue for the model. Summation ol the first and second
equations of eqn (1) under the condition that Q = €, provides

Q0 +maus) =k (Q)u, (2)

from which the relative displacement ratio 1s given by

u, Qm, )
w,—u, Kk (S)=Qm, +my) ’
The second equation of eqn (1) may be reduced to the following form.
ky=Q,m. {l + “e ] H
Uy =1,
Substitution of eqn (3) into eqn (4) yiclds the stiffness A* corresponding to Q,.
it = 'Q,'m; {k[(Qu)‘—Qdm,’} s)

k() :Qu(r;x‘,‘;{?m )
The eigenvalue cquation for the clastic structure with &,(Q2) and k% may be written as
follows.

fen(Q) = mym Q7 —[m kY my k (Q)+ A4 ]Q+k(QRT = 0. (6)

On the other hand. the eigenvalue equation for the clastic structure with the frequency-
independent support £, = k,(€,) and k* may be expressed as follows.

S#(QQ) = m o Q5 — [ ks (k +EMQ+L Kkt =0. (N
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Fig. 2. Plots of f5() ineqn (6) and f(Q) in eqn (7) with respect to Qin case of £ (Q) = 0.2Q° + 100
(x 10" kg-rad?/s?).

Consider a model with m, = m, = L.Ox 10* (kg). Q, = 100.0 (rad®/s®) and £ (Q) =
0.2Q°+100( x 10" kg-rad/s"). Figures 2(a) and (b) show the plots of f,(Q) in eqn (6)
and f5(Q) in eqn (7) for this model with respect to Q. respectively. Figures 2(a) and (b)
clearly illustrate that even if the elastic structure with the frequency-independent support
k, = k,(£,) has Q, as the fundamental eigenvalue, the clastic structure with the frequency-
dependent support &,(€2) does not necessarily have Q, as the fundamental eigenvalue.

Consider next another model also with iy = m, = 1.0 x 10" (kg), with the frequency-
dependent support k() = 220 (x 10" kg-rad?/s%), and with Q, = 100.0 (rad*/s*) as an
cigenvalue. The stiffness A% is determined similarly from egn (2) through ¢qn (5). Then the
cigenvalue equations for the clastic structures with {k(Q), &%} and with {£, = k,(Q,). &%}
are given by eqn (6) and cyn (7). respectively. Figures 3(a) and (b) show the plots of f,,(Q)
and f,,(€2) with respect 1o Q in this case, respectively. Figures 3(a) and (b) illustrate that
even if the clastic structure with the frequency-dependent support k() has Q, as the
fundamental eigenvalue, the clastic structure with the frequency-independent support

3. OPTIMUM DESIGN PROBLEM FOR SPECIFIED FUNDAMENTAL NATURAL FREQUENCY

Consider an elastic framed structure, shown in Fig. 4, consisting of uniform elastic
members with frequency-independent stiffnesses and supported by elastic members with
prescribed frequency-dependent stiffnesses. The cross-sectional arcas of the frequency-
independent elastic members are chosen as design variables. The centerline dimensions of
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Fig. 3. Plots of f¢p() in eqn (6) and fi(82) in eqn (7) with respect to Q in casc of k,(Q) = Q—20
(x 10" kg-rad*/s%).
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Fig. 4. Elastic frame with frequency-dependent elastic supports.

the frame and of the supporting members are prescribed. The degrees of freedom of the
whole structure, the number of members of the frame and the number of independent
stiffnesses of the supporting members arc denoted by N, nand S. respectively. Let A, and
{; denote the cross-sectional area and length, respectively, of the ith member of the frame.
All the members that are to be assigned one and the same cross-sectional area are to be
regarded as one member with the whole length. The set of the cross-sectional areas 4, (i = |,
2.....n)is represented by A and is called “design A The frame may be composed of some
truss members with axial stiffness only and’or of some beams or columns with axial and
bending stiffnesses. The Young's modulus of cuch member is to be prescribed. The moment
of inertia of the cross section of cach member with bending stiffness may be a nonlincar
function of the cross-sectional arca.

The supporting members may also be composed of some truss members and/or some
beams or columns whose axial and/or bending stiffnesses are trequency-dependent. The jth
axial or bending stitfness of the supporting members is denoted by B(Q) and a set of B,(£2)s
ts represented by B(Q) = {B,(Q)}. For the sake of simplicity, the elastic frames of design A
supported by the members with frequency-dependent stiffnesses B(Q) and by the members
with frequency-independent stiffnesses B, (= B(Q,)) are referred to in the following as “the
frame of design A with B(Q)™ and “the frame of design A with B,”, respectively.

The stiffness matrix K,,(A; B(Q)) of N x N in the global coordinate system of the
frame of design A with B(Q) may be expressed as follows in terms of the stiffness matrix
K,(A) associated with the frame and the stiffness matrix K, (B(Q)) associated with the
supporting members.

Kin(A:B(Q)) = K(A) + K (B(Q)). (¥)

Both K,(A) and K, (B(€2)) are the stiftness matrices of ¥ x N in the global coordinate system.
Each component of K,(B(Q)) is a lincar tunction of some of B()’s.

The mass matrix of the frames of design A with B(Q) and with B, is to consist of the
lumped mass matrix M, of N x N and the consistent mass matrix M (A) of .Vx V. The
mass matrix M(A) may then be expressed as follows.

M(A) = M (A)+ M. 9)

If the Ath-order cigenvalue and the kth-order cigenvector of the frame of design A with

B(Q) are denoted by Q, and Z). respectively, then the cigenvalue problem in this case may
be expressed as follows.

[Ken(A: B(Q)) — QM(A)ZE) = 0. (10)

Equation (10) indicates that this eigenvalue problem has a mathematical structure different
from that of a wusual clastic structure without any member with frequency-dependent
stiffness.
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The minimum weight design problem of this model structure for specified fundamental
natural frequency may be stated as follows.

Problem FEC
For an elastic frame supported by elastic members with frequency-dependent stifinesses
B(Q). find A that minimizes the objective function

w=A’L (rn
subject to the constraint on fundamental natural frequency
olAd)=w, (rQ(A)=Q) (12)
and the constraints on the minimum cross-sectional areas
A=A (=12....m (13)

where @ ,(A) and w, denote the fundamental natural frequency of the frame of design A
with B(Q) and the specified fundamental natural frequency. respectively. Furthermore,
Q(A) = w,(A).Q, =wland L™ = {{,...1} where ()7 indicates the transpose of a vector.
The case where all of the constraints on the minimum cross-sectional areas are satisfied in
cquality is not dealt with here.

In this paper, the only case will be considered where alt of the stiffnesses B(Q) of the
supporting members are expressed as single-valued non-increasing positive functions of Q.
It may appear difficult in Problem FEC to distinguish the frame of design A with B(Q)
from the frame of design A with B, after the specification of the fundamental natural
frequency. [t should be noted, however, that while the fundamental eigenvector of the frame
of design A with B, is characterized by Rayleigh's principle, that of the frame of design A
with B(Q) is not. Even if an cigenvector might be found for the frame of design A with
B(Q). no other method to confirm it as the fundamental eigenvector exists except by
demonstrating that the corresponding eigenvatue is indeed the minimum positive root of
the cigenvalue equation. As demonstrated in the previous section, there exist distinct
differences between a frame with supports B(Q) and a frame with supports B, in the case
that the stiffnesses B(Q) have no restriction on their characteristics.

4. TWO THEOREMS FOR ELASTIC FRAMES WITH FREQUENCY-DEPENDENT AND
FREQUENCY-INDEPENDENT SUPPORTS

In order to derive a set of necessary and sufficient conditions for global optimality to
Problem FEC, the following theorems must be introduced and proved first.

Theorem 1. Let o, denote the fundamental natural frequency of the frame of design A
with B, (=B(Q,)). Then the frame of design A with B(Q), all the elements B(Q) of which
are single-valued non-increasing positive functions of Q, has the same set of the fundamental
natural frequency and the fundamental eigenvector as that of the former frame.

Proof. Theorem | may be proved by showing that the frame of design A with B(Q)
has w, as one of the natural frequencies but will not have any other natural frequencies
smaller than w,,.

Equation (10) for the frame of design A with B, and with the fundamental natural
frequency w, may be written as follows.

[Ky(A:B,)—QM(A)]Z;(A) = 0 (14)

where Kg(A ; B,) and Z;,(A) denote the stiffness matrix of the frame of design A with B,
and the fundamental eigenvector of this frame, respectively. K,(A ; B,) is the matrix derived
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by replacing B(Q2) by B, in the matrix K;,(A : B(Q)). Premultiplication of eqn (14) by Z,(A)”
provides the following expression ot , as a Rayleigh’s quotient.

_Zut A KfABYZ(A)

T ZOMAZA)

(15)

Sinceeqn (15) is the Rayleigh’s quotient for the frame consisting of members with frequency-
independent stiffnesses and Q, s indeed the fundamental eigenvalue of this frame, the right-
hand side of eqn (15) for any other kinematically admissible modes has the minimum value
Q, due to Rayleigh’s principle.

Now assume that the frame of design A with B(Q) has an eigenvalue Q, =
Q,— AQUAQ > 0) smaller than Q,. Then the stiffness matrix ot this frame for the free vibra-
tion of frequency w, may be expressed as fotlows due to the linearity of each component
of the matrix K, with respect to B,(Q).

Kin(ATB(Q, - A0)) = K(A) +K,ABQ,)) +K,(AB) (16)

where AB = B(Q2,— AQ)—B(£2,) and AB, = 0 (for all j) due to the non-increasing charac-
teristics of B(Q). Let Z,(A) denote the eigenvector of this frame corresponding to the
cigenvalue Q,. By substituting Q, and Z,(A) in place of Q, and Z¥) in eqn (10) and
premultiplying the resulting equation by Z,(A)’, the cigenvalue Q, may be written as
follows.

Q = 7,(\) "Kin(A I B(Q, ~AQ)Z,(A)

’ 7, (A)'M(A)YZ,(A) (n

Substitution of c¢qn (16) into cqn (17) with the aid of K, (B(£,)) = K,(B,) yiclds the
following equation.

o LN KASBYZUA) 7 KY(AB)Z,(A)

"2 A)Y MM (A) 7, (M) MAYZ,(A) (1%)

Since Z,(A) is a kinematically admissible mode for the frame of design A with B, the
following inequality is drawn from eqn (15) due to Rayleigh's principle.

2N KA BYZ,(A)

: 19
Z,(A) M(A)Z(A) ()

Q, <

Furthermore, the fact that AB, > 0 (for all ;) and the positive definiteness of the matrices
K, and M(A) provide the following incqualitics.

Y
7, (A K (AB)Z,(A) = Y ABIZ,(A)K,Z, (M)} 20 (20a)

-1

Z,(A) " M(A)Z,(A) >0 (20b)

where Ky, is defined as tollows.

hY
K(AB) = Y ABK,, 2n

I

In inequalities (20a. b), Z,(A)'M(A)Z(A) and Z,(A) 'K, Z,(A) represent the total kinetic
encrgy of this frame in the free vibration and the strain energy per unit stiffness of the jth
element with B(Q). respectively. Equation (18) and inequalities (19) and (20a.b) require
that the incquality Q, > Q, must hold. But this result apparently contradicts the initial
assumption that Q, < Q,. Therefore there does not exist any cigenvalue smaller than Q, in
the case that all of the stiffnesses B(Q) of the supporting members are single-valued non-
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Fig. 5. (i) Plots of fundamental eigenvalues of the frame of design A with respect to stiffness B, of
a frequency-independent supporting member and (ii) Q— B,(Q) curve.

increasing positive functions of Q. Hence it is concluded that the eigenvalue Q, of this frame
of design A with B(Q) is indeed the fundamental eigenvalue.

Since the frame of design A with B(Q) and the frame of design A with B, have the
same stiffness and mass matrices due to Kqp(A ; B(Q,)) = Kg(A : B,), it is evident that they
have the same fundamental eigenvector. This completes the proof.

The converse theorem may be stated as follows.

Theorem 2. Let w, denote the fundumental natural frequency of the frame of design A
with B(Y) all the elements B(QQ) of which are single-valued non-increasing positive functions
of Q. Then the frame of design A with B, (=B(Q,)) has the same set of the fundamental
natural frequency and the fundamental eigenvector as that of the former frame.

Proof. Theorem 2 can be proved by showing that the frame of design A with B, has
w, as one of the natural frequencics, but will not have any other natural frequencies smaller
than w,.

Assume that the frame of design A with B, = B(Q,) = {8,} has w, as one of the natural
frequencies other than the fundamental natural frequency. Then this frame apparently has
the fundamental natural frequency @, smaller than w,,. It is possible to prove that the frame
of design A has a fundamental natural frequency greater than or equal to w, when supported
by eclastic members with stiffnesses larger than B,. Figure S indicates that the plots of the
fundamental eigenvalue of the frame of design A with respect to the stifiness of a frequency-
independent supporting member intersect with the Q — B,(Q) curve at a point smaller than
Q,. Let Q, and B, = {8,} denote the fundamental eigenvalue and the stiffnesses of the
frequency-independent supporting members at the intersection. Then it is apparent that
B, = B(Q,). It follows from Theorem 1 that if the frame of design A with B, = B(Q,) has
the fundamental natural frequency w,, the frame of design A with B(Q) also has the
fundamental natural frequency w,. This consequence, w, < w,, apparently contradicts the
condition that the frame of design A with B(Q) has the fundamental natural frequency w,.
It is therefore concluded that the frame of design A with B, has w, as the fundamental
natural frequency. This completes the proof.

Theorems | and 2 lead us to the conclusion that the design space with respect to the
fundamental natural frequency w, of a frame of design A with B(Q2) has one-to-one
correspondence with that of the frame of design A with B, = B(Q,) so long as all the
elements of B(Q) are single-valued non-increasing positive functions of Q.

The necessary and sufficient conditions for global optimality to Problem FEC can be
derived as follows after Sheu (1968) for the case where the moment of inertia of the cross
section of cach member is expressed as a lincar function of the cross-sectional area.

Zrp(A)T (K, —QM)Zip(A) I,

¢

ZosRTMR)Zen(R) g A (222)
Zip(A)(K~QM)Zep(A) L - .

ST LAMAPS T i § 22b

ZooRIMRA)Z0K) S (225)
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where A is the optimum design for Problem FEC, p a positive scalar and K,. M, the following
matrices.

(23a.b)

5. OPTIMUM DESIGN PROBLEM SUBJECT TO AN INEQUALITY CONSTRAINT ON
FUNDAMENTAL NATURAL FREQUENCY

Thus far, only the optimum design problem of elastic structures supported by members
with frequency-dependent stiffnesses subject to an equality constraint on fundamental
natural frequency has been dealt with. Consider next an extended optimum design problem
subject to an inequality constraint on fundamental natural frequency. For the sake of
simplicity. an optimum design problem without any constraint on minimum cross-sectional
area is considered. The optimum design problem of elastic structures supported by members
with frequency-dependent stiffnesses subject only to an inequality constraint on fun-
damental natural frequency may be stated as follows.

Problem FICA

B(Q). find A that minimizes the objective function (11) subject to the inequality constraint
on fundamental natural trequency

w(\) 2o, (or Q(A) =Q,). (24)

A problem where all the constraints on the minimum cross-sectional arcas are deleted
in Problem FEC is called Problem FEC A in the following.

Since the stiffnesses B(Q) of the supporting members are frequency-dependent, the
optimal solution to Problem FIC A may not necessarily coincide with the optimal solution
to the corresponding Problem FECA. In this section, the qualification condition on B(Q)
ts discussed so that the optimal solution to Problem FECA is also the optimal solution to
Problem FICA. The optimality conditions characterizing the global optimality of the
solution to Problem FECA have been stated in the previous section. A set of optimal
solutions to Problem FECA for a specified range of fundamental eigenvalue € constitute
an ordered sct of optimum designs (Nakamura and Ohsaki, 1988). All the varables in this
ordered set of optimum designs may be regarded as piecewisely differentiable continuous
tunctions of Q. If the following condition is sutistied for all Q in the range of Q = Q,, then
the solution to Problem FECA with the constraint Q = Q, also becomes the solution to
Problem FIC A with the constraint Q = Q.

dw(Q2) ae
0 > 0. (25)

While the concepts of an ordered sct of optimum designs and of regarding the optimum
design variables as functions of some problem parameters are known (see for instance,
Nakamura and Nagase, 1976), some explicit general expressions of sensitivity coeflicients
of optimum solutions have been introduced rather recently (Sobicszezanski-Sobieski et al.,
1982 ; Schmit and Chang. 1984 Vanderplaats and Yoshida, 1985). The derivative of w(QQ)
can be written explicitly as follows.

Let A(2) and Zm(Q) = Z,,(A(8)) denote the cross-sectional arcas and the fun-
damental eigenvector of the optimal frame supported by members with frequency-depen-
dent stiffnesses in Problem FEC A with the constraint on fundamental eigenvalue Q,(A) = Q.
Since the constraint on fundamental natural frequency is the only active constraint in
Problem FEC A, the derivative of the objective function with respect to € can be expressed
as follows after Barthelemy and Sobicszczanski-Sobieski (1983).
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Fig. 6. Plane elastic shear building supported by two frequency-dependent clastic springs.

dw(@Q) _ > dB(Q) 2,-,)(9)’K”L2,-D(Q>J
Tag THE [' T8I 2o @ M@ 2@ (26)

where M(Q) = M(A()) and () denotes a positive Lagrange multiplier. As stated before,
Z10(Q)M(Q)Z,,5(Q) and Z,,(Q) K 5,Z,,(Q) in eqn (26) are positive definite.

If all the elements of B(Q) are single-valued non-increasing positive functions of €,
then the following inequalities hold.

Qg’g}) <0 (forall j). (27)
It can be shown that if inequalitics (27) are utilized in eqn (26), then inequality (25) always
holds. It is concluded therefore that the solution to Problem FECA is also the solution to
Problem FIC A, provided inequalities (27) are satisfied, i.e. all the stiffnesses of the supporting
members are given as single-valued non-increasing positive functions of Q.

It should be noted that dw(Q)/dQ and d B,(Q)/dQ in eqn (26) need only to be piecewisely
differentiable, e.g. the stiffness functions B(Q) of the supporting members may include
jumps.

6. EXAMPLE: PLANE ELASTIC SHEAR BUILDING SUPPORTED BY
FREQUENCY-DEPENDENT ELASTIC SPRINGS

Consider a plane elastic shear building, shown in Fig. 6, supported by two elastic
springs with frequency-dependent stiffnesses as an example. The stiffnesses k4 (Q) and kx(Q)
of the two springs arc to be prescribed. The s columns with equal stiffness in each story are
connected by rigid floors. The lumped mass in the ith floor, its moment of inertia around
its centroid and the story hecight of the /th story arc denoted by m,, /4, and A, respectively,
and are prescribed. Let r; and E denote the radius of gyration of the cross section of the
columns in the ith story and Young's modulus of all the columns and they are also
prescribed. The set of cross-sectional areas A of the columns are the design variables here.
For simplicity of expression, the consistent mass matrix is not considered in this example.
A horizontal displacement u.{t) and an angle 0,(f) of rotation of the base and a set
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of relative honizontal displacements w (1)...u{t) of the shear building to the base
are chosen as generalized coordinates. where ¢ denotes time. The fundamental eigen-
vector of the shear building of design A with A,(Q) and kR(Q) is expressed here as
Zio(A) = 1UHA) Q)+ U (A U A)+ U (A) OA). The degrees of freedom of
this model is ¥ = f +2.

The matrices ¥M,. K, and K, defined in the foregoing sections may be expressed as
follows.

. 0 o ]
"y 0 0 ‘.0 0
0 0.
™, mH, 0 9. -4,
‘Nln - ‘ B K, =
0 0.
Ty omyH, —9. Y 0
{ 0 mH, ... mH, {; 0 0. 0.
i 0 0 |
1 [‘O
a0 0 0
Ko = . K= (28a-d)
0 0 0 0
0 ] |
where
" . A 125Er}
i, = 2 h, [= L m fl; + 2‘ Iy, ¢, =- " (29 ©)
p— 1 1~ 1 -0 '

In this example, B(Q) = £,4Q) and 8.(Q) = &,(2). The matrix M, becomes the null matrix
according to the assumption mentioned above.
The problem corresponding to Problem FECA may now be stated as follows.

Problem SEC
for a plane elastic shear building supported by two springs with frequency-dependent
stiffnesses & ,(€) and A (), tind A that minimizes the objective function
w=A"L (30
subject to the constraint on fundamental natural frequency

w (A = w, (3O

where AT = {4, A and LM = {hy oo 0y}
Application of the optimality condition (22a) into Problem SEC provides the following

equation.

Zr'n(:\')rK:Zm(x) h, .
A M Y (2 . (32)
ZI-‘D('\)INIHZFI)(A) M ( /)

Equation (32) may be rewritten as follows.
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Zeo(A)MZip(A)

(i=1.2,....01. (33)

It should be noted that the optimality conditions (33) involve a problem of selecting
an appropriate combination of square root signs. The set of optimality conditions (33)
must therefore be understood as the conditions stated for the true fundamental eigenvector
of the shear building of design A with {ku(Q). kx(Q)}. Since it can be stated from Theorems
1 and 2 that the shear building of design A with {ku(Q). kx(Q)} and the shear building of
design A with (£, = k(Q,). K¢ = kx(Q,)} have the same sct of the fundamental natural
frequency and the fundamental cigenvector, this problem can be resolved by requiring that
the cigenvector in eqn (33) is the true fundamental cigenvector of the shear building of
design A with {&,,, £,}. It can be proved that if a set of all the positive roots or a set of all
the negative roots is adopted. then the corresponding cigenvector indeed minimizes the
Rayleigh's quotient for the shear building of design A with {£,. £} and, therefore, is the
true tundamental cigenvector. This circumstance is almost the sume as in the case of a plane
clustic shear building with a tixed base (Nakamura and Yamane, 1986).

It is possible to derive a set of closed-form solutions of the fundamental cigenvector
and the optimal cross-sectional areas to Problem SEC by utilizing the optimality conditions
(33) and the equations corresponding to eqn (10) for this model as in the case of elastic
shear buildings supported by springs with frequency-independent stiffnesses (Nakamura
and Takewaki, 1985).

Now in order to demonstrate the validity of Theorems | and 2, consider a rigid disc
rested on an elastic half space and evaluate the frequency-dependent stiffnesses of the
two clastic springs as the real parts of the impedance functions. Approximate analytical
expressions for k,(Q2) and k.(Q) have been derived as follows by Veletsos and Verbic
(1974).

8pVir,
k@ = %= (34)
) 8pVir} b, r. ¥
k@ = 3755 n-b.+—-;—:———b,<z>n (35)
L+b3 7 Q

where V., p. v and r, denote the shear wave velocity, the mass density and the Poisson’s
ratio of the half-space soil and the radius of the rigid disc, respectively. The coefficients b,
b, and b, arc the constants given corresponding to the Poisson’s ratio. In this example. the
case where v = 1/3, p = 2.0 x 10* (kg/m"), ¥, = 100 (m/s) and r, = 5.64 (m) is dealt with.
The constants are then given by b, = 0.5, b, = 0.8 and b, = 0.0. In this case, the horizontal
stiffness £,(Q) turns out to be a constant and the rotational stiffness kz(Q) a function of
Q. Figure 7 shows the plots of the values in the bracket in eqn (35) with respect to the
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Fig. 8 Plots of f,(Q) and £,4Q) with respect to Q for shear buildings with frequency-dependent
and frequency-independent supports.

dimensionless frequency «, = wr,/ 1, where ) = v £ Tuis therefore said that the stifTnesses
k() and kg(Q) are single-valued non-increasing positive functions of Q.

A ten-story shear building is considered here. The lumped masses and the moments of
inertia of floor muasses are prescribed as mg = 90.0 < 10° (kg), m, = 30.0 x 10° {kg)
(i=1....10) and T4y = 7.5x 10° (kg-m?), I, =2.5x10° (kg-m’) (i =1.....10). The
story heights are prescribed as £, = 350.0 (¢m) (i = 1... .. 10) and the radu of gyration of
columns as a constant. If the fundamental cigenvalue is specified as Q, = 39.5 (rad* 's°) which
corresponds to 1.0 (s) of the fundamental natural period, the corresponding dimensionless
frequency a, and the dimensionless stiffness of &,(2) are indicated by the mark (7 in Fig.
7. Letkyy = ky(Q,) and &y = kx(,) denote the frequency-independent stiffnesses. Then the
optimal solution of the shear building which is supported by the frequency-independent
springs {k,,. kx} and has the fundamental cigenvalue Q, is obtained from the design formula
by Nukamura and Takewaki (1985) and is given by {A,¢,} = {113.8, 111.5, 107.3, 100.9,
92.6, 82.2, 69.8, 55.4, 39.0, 20.5} (N/m).

The solid line tn Fig. 8 shows the plots of the function corresponding to egn (6) with
respect to £ of the shear building of design { A, g,} with {£,(Q). &,(€2)}. On the other hand,
the broken line in Fig. 8 shows the plots of the function corresponding to eqn (7) with
respect to Q of the shear building of design !4, ¢, with &, £}, Figure 8 indicates that
both of the shear buildings of the same design {A,¢,} with 1A,(Q), kx()} and 1k, k!
have Q, as the fundamentual cigenvalue. This fact clearly demonstrates the validity of
Theorems | and 2.

7. CONCLUSIONS

Two theorems have been introduced and proved. In the tirst theorem it has been proved
that an clastic frame supported by members with frequency-dependent stiffnesses has the
same set of a fundamental natural frequency and a fundamental cigenvector as that of the
same clastic frame supported by members with the corresponding frequency-independent
stiffnesses, provided the former stiffnesses are expressed by single-valued non-increasing
positive functions of frequency. [t has been shown also that the converse theorem holds.
These two theorems have established one-to-one correspondence between the design spaces
of an ordered set of clastic frames supported by members with frequency-dependent stiff-
nesses and of the corresponding ordered set of clastic frames supported by those with the
corresponding frequency-independent stiffnesses, both with respect to fundamental natural
frequency. On the basis of this one-to-one correspondence, it has been concluded that the
nceessary and sufficient conditions of global optimality for the optimum design problem of
the former frames coincide with those of the latter frames.

It has been shown furthermore that, for the ordered set of optimum designs with
respect to the prescribed fundamental natural frequency. the first derivative of the objective
function is positive throughout that range of frequency for which all the support stiffnesses
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are expressed as single-valued non-increasing positive functions. Hence it has been con-
cluded that the optimal solution to the optimum design problem for specified fundamental
natural frequency is also the optimal solution to the problem subject to the corresponding
inequality constraint for frames with those supports. The implication of the theorems has
been illustrated through an optimum design of a ten-story plane shear building model
supported by two springs with realistic frequency-dependent stiffnesses and by those with
frequency-independent stiffnesses.

It should be remarked finally that the two theorems are certainly applicable to any
finite element model supported by springs with frequency-dependent stiffnesses.
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